## Systematically thinking about Systems

Candace Lutzow-Felling Director of Education State Arboretum of Virginia, University of Virginia University of Virginia's Blandy Experimental Farm & The State Arboretum of Virginia



#### What we do:

- Outdoor learning, preK-12
- Professional development
- Scientist outreach training
- Ecology research
- Public outreach



Our Mission: To increase understanding of the natural world through research and education





#### Analyze the objects at your table

- What are the PARTS?
- What do you think each of these parts does? (What is their FUNCTION?)
- What would happen to the object if you REMOVED one of the parts?
- What is the INPUT to the object?
- What is the object's OUTPUT?
- Is this object a SYSTEM?

### **System Analysis: Noise Maker**

| Parts | Function | <b>Removal Impact</b> |
|-------|----------|-----------------------|
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |

| Input(s)  |  |
|-----------|--|
| Output(s) |  |

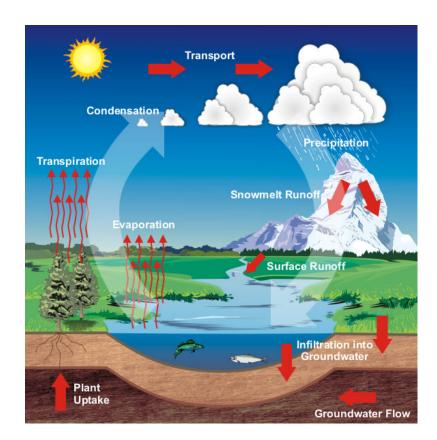
Is this object a system?

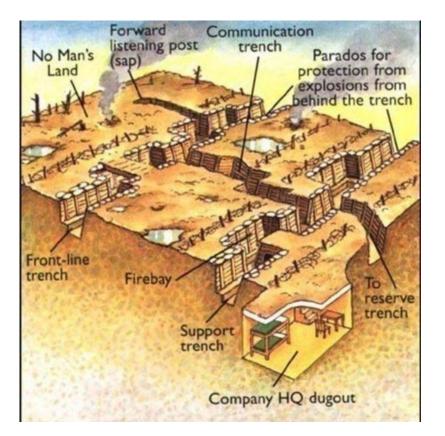
## **System Analysis: Noise Maker**

|           | Parts                            | Function                                           | Removal Impact                       |
|-----------|----------------------------------|----------------------------------------------------|--------------------------------------|
|           | Blow hole                        | Air entry point                                    | No noise; no uncurling of paper tube |
|           | Whistle                          | Make noise                                         | No noise                             |
|           | Tube                             | Air flow to flattened paper tube                   | No uncurling of paper<br>tube        |
|           | Curled paper tube<br>(flattened) | Fills with air & uncurls                           | No obvious moving part               |
|           | Wire (in paper tube)             | Recurls paper tube                                 | No recurling of paper tube           |
| Inp       | out(s)                           | Air                                                |                                      |
| Output(s) |                                  | Noise<br>Flattened paper tub<br>Is this object a s | e fills with air & uncurl<br>ystem?  |

## **System Analysis: Bag of Items**

| Parts |           | Function | Removal Impact |
|-------|-----------|----------|----------------|
|       |           |          |                |
|       |           |          |                |
|       |           |          |                |
|       |           |          |                |
|       |           |          |                |
|       | Input(s)  |          |                |
|       | Output(s) |          |                |


Is this object a system?


## **System Analysis: Bag of Items**

| Parts |          | Function            |        | Removal Impact                                   |
|-------|----------|---------------------|--------|--------------------------------------------------|
| Items |          | ?                   |        | None; still have a<br>bag of individual<br>items |
| Bag   |          | Holds item<br>group | s in a | Still have a group<br>of individual<br>items     |
|       | Input(s) |                     | None   |                                                  |
|       | Output(s | 5)                  | None   |                                                  |
|       | Is this  | s object a          | syster | n? <b>NO!</b>                                    |

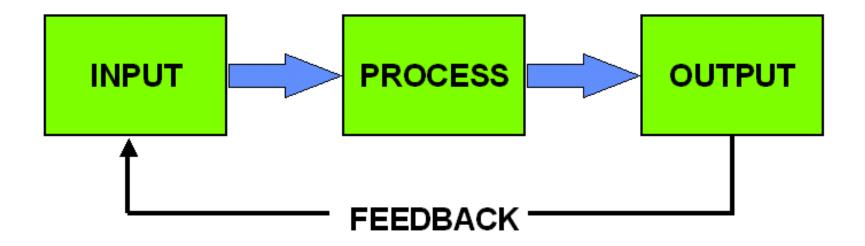
## **System Definition**

#### A collection of interrelated parts that work together to achieve one or more common purposes or functions.



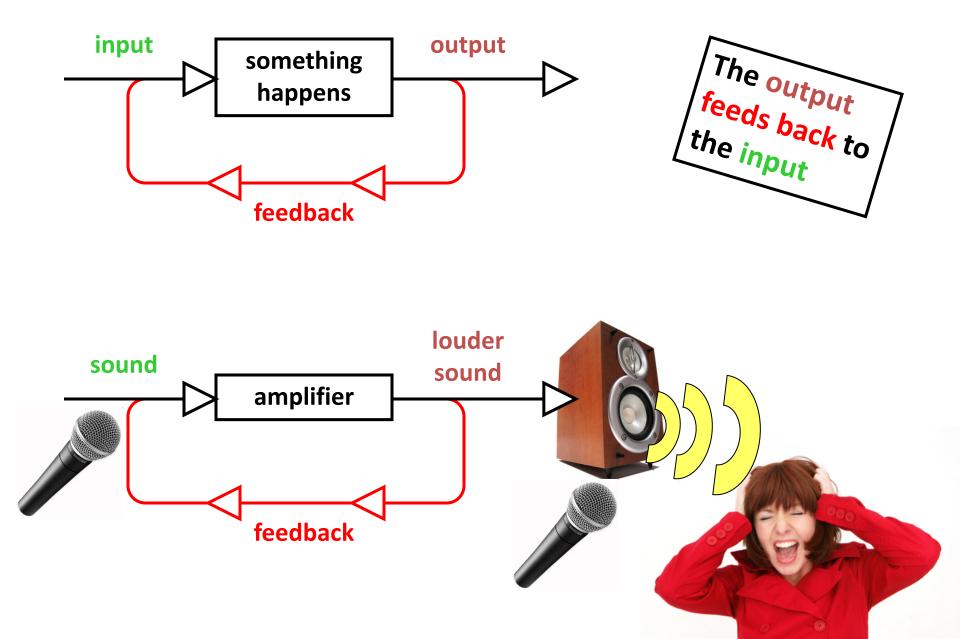


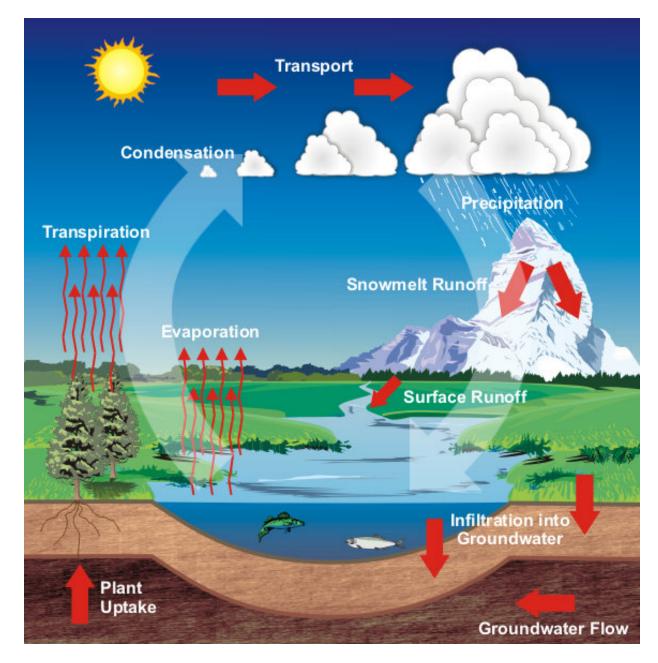
# How do we begin to understand systems? System Components



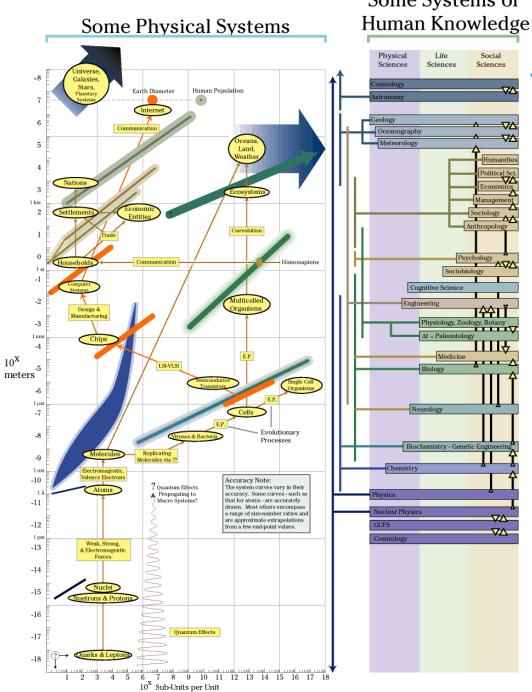






# How do we begin to understand systems? System Function




**Components** produce the activity (the system process) with a force or energy input

#### What is a Feedback?





Feedback in a natural system



### Some Systems of

#### How do we define Systems?

#### By:

#### 1. Type


- Simple or Complex
- Natural or Designed
- Physical or Informational

#### 2. Scale Minute to Infinite

#### 3. Boundary

All the parts contained within a defined space

#### Natural & Human-Made Systems



\*\* The Court of Appeals for the Federal Circuit also receives cases from the International Trade Commission, the Merit Systems Protection Board, the Patent and Trademark Office, and the Board of Contract Appeals.

#### **System Analysis: Leaf**

| Parts | Function | <b>Removal Impact</b> |
|-------|----------|-----------------------|
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |

| Input(s)  |  |
|-----------|--|
| Output(s) |  |

Is this object a system?

#### **System Analysis: Leaf**

| Parts               | Function                                                                   | Remove                                                                                                                                                                                     |
|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blade               | Oxygen exchange &<br>absorbs energy from<br>sunlight                       | No photosynthesis; plant<br>will die                                                                                                                                                       |
| Leaf stem (petiole) | Attaches blade to plant<br>stem                                            | Leaf will not get water &<br>necessary nutrients from<br>other parts of the plant;<br>Photosynthetic products<br>will not be transferred to<br>other parts of the plant;<br>plant will die |
| Veins               | Move water & nutrients<br>around the blade & from<br>the blade to the stem | Glucose produced during<br>photosynthesis will stay in<br>the leaf blade; plant will<br>die                                                                                                |
|                     |                                                                            |                                                                                                                                                                                            |
|                     |                                                                            |                                                                                                                                                                                            |

## **System Analysis: Leaf**

| Input(s)  | Water, Energy from sunlight,<br>CO <sub>2</sub> |
|-----------|-------------------------------------------------|
| Output(s) | Photosynthesis, Sugars, O <sub>2</sub>          |



## Is this object a system? Yes!

#### **System Analysis: Jar of Rocks**

| Parts | Function | <b>Removal Impact</b> |
|-------|----------|-----------------------|
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |
|       |          |                       |

| Input(s)  |  |
|-----------|--|
| Output(s) |  |

Is this object a system?

## **System Analysis: Jar of Rocks**

| Parts    |           | Function               |      | Removal Impa                    | act |
|----------|-----------|------------------------|------|---------------------------------|-----|
| Rocks    |           | ?                      |      | None; still hav<br>jar of rocks | e a |
| Jar      |           | Holds rocks in a group |      | Still have a gro<br>of rocks    | oup |
|          |           |                        |      |                                 |     |
| Input(s) |           | None                   |      |                                 |     |
|          | Output(s) |                        | None |                                 |     |

Is this object a system? NO!

#### NGSS Cross-Cutting Concepts

- Bridge disciplinary boundaries
- Unite core ideas throughout the fields of science and engineering
- Help students deepen their understanding of the disciplinary core ideas &
- Develop a coherent and scientifically based view of the world

**<u>Structure and function</u>**. The way in which an object or living thing is shaped & its substructure determine many of its properties & functions.

<u>Systems and system models</u>. Defining the system under study—specifying its boundaries & making explicit a model of that system—provides tools for understanding & testing ideas that are applicable throughout science & engineering.

#### **Systems Teaching in the NGSS**

| Grades | System Learning Focus                                               | Disciplinary Examples                                                                                                                                                                                        |
|--------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K-2    | What parts make up the whole?                                       | <ul> <li>Animal &amp; plant characteristics</li> <li>Sun, stars, planets</li> <li>Weather</li> </ul>                                                                                                         |
| 3-5    | What happens if we remove a part?                                   | <ul> <li>Interactions b/n organisms</li> <li>Structure &amp; function in organisms</li> <li>Rock cycle</li> <li>Simple &amp; compound machines</li> </ul>                                                    |
| 6-8    | System inputs & outputs<br>Subsystems                               | <ul> <li>Earth's energy budget</li> <li>Cells &amp; cellular organization</li> <li>Watersheds/Ecosystems/Solar Systems</li> <li>Atomic structure</li> </ul>                                                  |
| 9-12   | Complex systems<br>Balance/Homeostasis<br>Feedback mechanisms (+/-) | <ul> <li>Body systems</li> <li>Earth system interconnections</li> <li>Chemical properties &amp; reactions</li> <li>Transfer &amp; storage of energy among systems</li> <li>Global climate science</li> </ul> |

#### Atmosphere

#### Hydrosphere



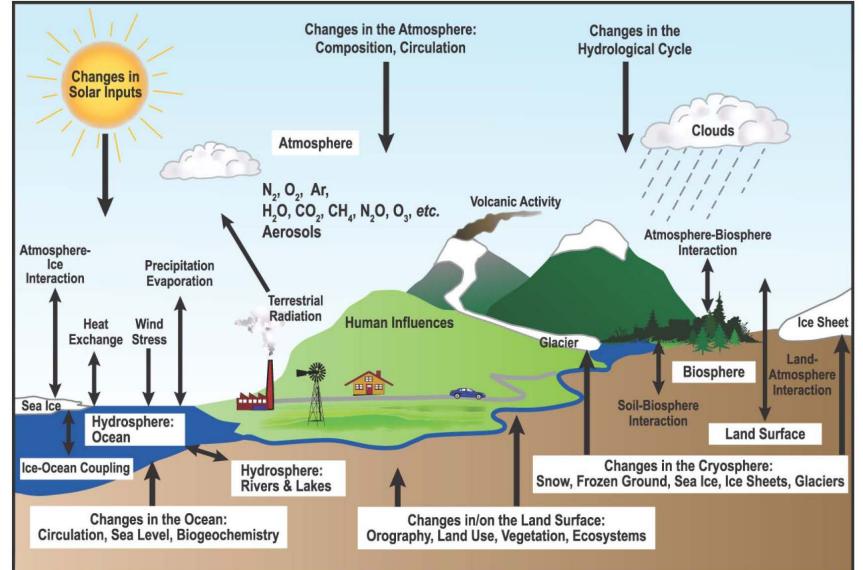
Geosphere

Biosphere



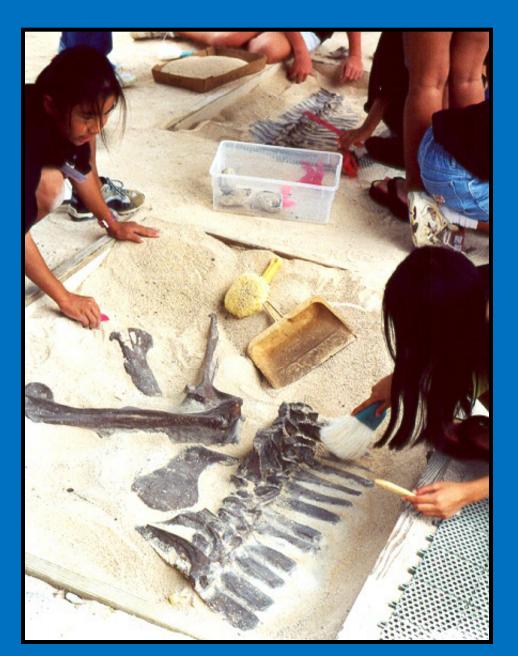


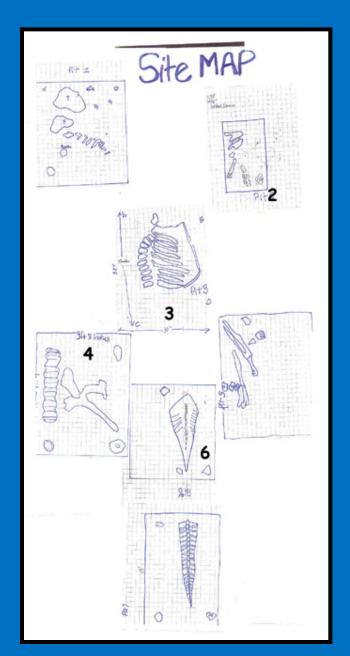







#### Watershed Studies





#### **Global Climate Science**



**IPCC 2007** 

#### 2<sup>nd</sup> Grade Students Excavating & Mapping a Paleontology Site

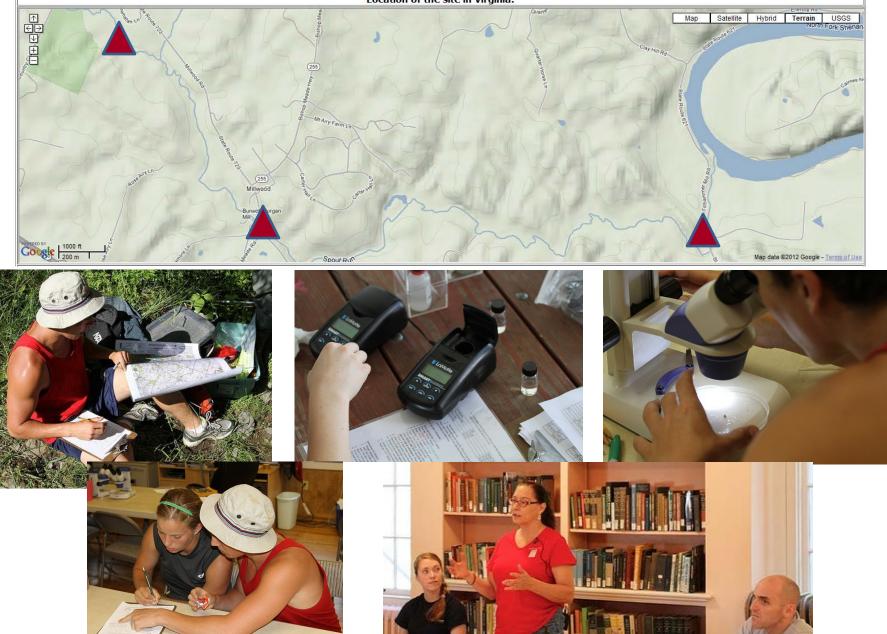




#### Watershed Analysis: 6<sup>th</sup> grade










Clarke County, Virginia Hydrologic Unit Code 02070007 Latitude 39°04'01.29", Longitude 78°00'13.51" NAD83 Drainage area 21.4 square miles Gage datum 440 feet above NGVD29

#### Watershed Analysis HS

Location of the site in Virginia.



#### **Middle School Alternative Program**

#### Is Lake Georgette functioning as a vernal pool?



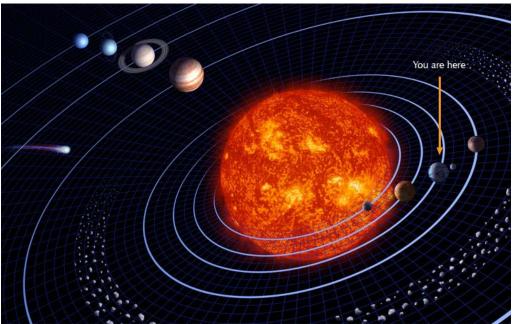






Organism identification & field site mapping





#### Name some disciplines that study systems

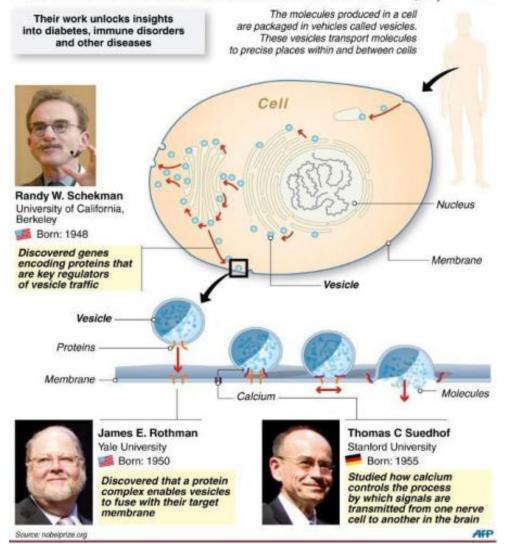
- Economics: production and consumption, market value, services
- Ecology: organisms, communities, ecosystems, energy flow, nutrient cycling
- Linguistics: phonetics, etymology, speech/writing analysis
- **Community Planning:** land development, mapping, cultural heritage
- Mathematics: numbers & equations, geometric models

## Why is systems thinking important?

- Helps us to understand complex problems
- Helps us to communicate ideas
- Makes connections between seemingly unconnected ideas/disciplines
- Often at the realm of discovery






### **2013 Nobel Prize in Medicine**

Nobel Prize

2013

#### The Nobel Prize for Medicine

James Rothman and Randy Schekman of the US and Germany's Thomas Suedhof shared the prize for work on the body's cell transport system



"...for their discoveries of machinery regulating vesicle traffic, a major transport system in cells"

- Protein structure & processes
- Celluar genetics
- Molecular signaling

## **Systems Thinking & Learning**

- What is a system?
- What is systems thinking?
- Why important to teach?



- Develop critical thinking, analytical, & problem-solving skills
- Meaningful connections
- Encourage discovery



"When we try to pick out anything by itself, we find it hitched to everything else in the Universe."

-- John Muir

## welcome talking further with you!

#### Visit our website: http://blandy.virginia.edu

Email: Iutzow-felling@virginia.edu Candace Lutzow-Felling Director of Education

## Call: 540-837-1758 x 230







## **EXTRA SLIDES**

**System:** An assemblage of interrelated parts through which matter, energy, & information flow.

**Subsystem:** The subset of interrelated parts within the larger system.

**Input:** The addition of matter, energy, or information to a system.

**Output:** Matter, energy, or information that flows out of a system.

**Open system:** A system in which matter may flow in & out, as opposed to a closed system in which matter may not flow in or out.

**Closed system:** A system in which matter may circulate, but may not enter or leave (energy, however, can flow in and out)

## Why systems thinking?

In systems thinking, the individual parts are identified as well as an investigation of how the parts work together to make the whole.

- Develop reasoning skills that cut across the disciplines; cross-disciplinary reasoning
- Dissect problems & break them down into solvable components
- Spark innovation: create new models, new systems, new solutions